

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 715–731

FINDING THE CLOSEST LATTICE POINT BY ITERATIVE
SLICING∗

NAFTALI SOMMER† , MEIR FEDER† , AND OFIR SHALVI†

Abstract. Most of the existing methods that are used to solve the closest lattice point problem
are based on an efficient search of the lattice points. In this paper a novel alternative approach is
suggested where the closest point to a given vector is found by calculating which Voronoi cell contains
this vector in an iterative manner. Each iteration is made of simple “slicing” operations, using a
list of the Voronoi relevant vectors that define the basic Voronoi cell of the lattice. The algorithm
is guaranteed to converge to the closest lattice point in a finite number of steps. The method is
suitable, for example, for decoding of multi-input multi-output (MIMO) communication problems.
The average computational complexity of the proposed method is comparable to that of the efficient
variants of the sphere decoder, but its computational variability is smaller.

Key words. lattice, closest neighbor, Voronoi relevant vectors, closest point search, lattice
decoding, lattice quantization, lattice codes

AMS subject classifications. 03G10, 94B60, 94A05

DOI. 10.1137/060676362

1. Introduction. A real lattice of dimension n is defined as the set of all linear
combinations of n real basis vectors, where the coefficients of the linear combination
are restricted to be integers:

Λ(G) Δ= {Gu : u ∈ Z
n}.

G is the m × n generator matrix of the lattice, whose columns are the basis vectors
which are assumed to be linearly independent over R

m. The closest lattice point
problem is the problem of finding, for a given lattice Λ and a given input point
x ∈ R

m, a vector c ∈ Λ such that

‖x − c‖ ≤ ‖x − v‖ for all v ∈ Λ

where ‖·‖ denotes the Euclidean norm.
The closest lattice point problem has applications in various fields, including

number theory, cryptography, and communication theory [1]. Communication theory
applications include quantization, multi-input multi-output (MIMO) decoding, and
lattice coding for the Gaussian channel. Examples of such coding schemes are the
recently introduced low-density lattice codes, which are based on lattices whose gen-
erator matrix has a sparse inverse [2], and signal codes, which are based on lattices
with a Toeplitz generator matrix [3]. The computational complexity of the general
closest point problem is known to be exponential with the lattice dimension n [4], [5].

Most of the existing methods that are used to solve the problem try to search
the lattice points in an efficient manner. The commonly used sphere decoder, which
is based on the Pohst enumeration [6], finds all the lattice points that lie within a

∗Received by the editors November 30, 2006; accepted for publication (in revised form) December
7, 2008; published electronically April 9, 2009. A partial version of this paper appeared in Proceedings
of the 2007 IEEE International Symposium on Information Theory (ISIT), Nice, France, 2007.

http://www.siam.org/journals/sidma/23-2/67636.html
†Department of Electrical Engineering - Systems, Tel-Aviv University, Tel-Aviv, Israel (naftalis@

eng.tau.ac.il, meir@eng.tau.ac.il, oshalvi@yahoo.com).

715

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

716 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

hypersphere of a given radius around the input point, where more efficient variants
adapt the search radius [1] and optimize the search order [7]. A thorough explanation
of the sphere decoder and its variants can be found in [1], and its outline is summarized
in the appendix. The complexity of the sphere decoder can be further reduced by
using algorithms that give approximate solutions [8], [9], [10]. In some applications,
the complexity can be reduced by assuming specific lattice structures [2], [3].

In this paper we shall address only the problem of finding the exact solution
for general lattices and present a new algorithm, called “the lattice slicer.” This
algorithm breaks the complex n-dimensional problem to a series of one-dimensional
simple problems. In each such problem, the Euclidean space is divided into parallel
layers, and the algorithm has to decide to which layer the input point belongs. This
basic operation is referred to as “slicing.” Using the results of the slicing steps, the
algorithm can find the Voronoi cell of the lattice that contains the input point. In order
to perform the slicing operations, a computationally intensive preprocessing stage is
required. Therefore, the proposed algorithm is mainly suitable for cases where many
closest lattice point problems have to be solved for the same lattice.

The computational complexity of the slicer algorithm is comparable to that of
the sphere decoder, but it is significantly less sensitive to the eigenvalue spread of the
lattice generator matrix G. This is an important advantage in applications where the
coefficients of G cannot be designed in advance or may even be random (e.g., MIMO
decoding).

The outline of this work is as follows. First, section 2 introduces some basic
definitions and properties of lattices. Section 3 presents the proposed lattice slicer
algorithm, followed by convergence analysis in section 4 and discussion of the compu-
tational complexity in section 5. Section 6 presents a coordinate search interpretation
of the lattice slicer, followed by a description of the preprocessing stage of the algo-
rithm in section 7. Finally, simulation results are presented in section 8.

2. Basic definitions and notations. The dot product of two vectors a, b ∈ R
m

is defined as a · b
Δ=
∑m−1

k=0 akbk. The Euclidean norm of a ∈ R
m therefore equals

‖a‖ =
√

a · a.
The Voronoi region of a lattice point is the set of all vectors in R

m for which this
point is the closest lattice point, namely,

Ω(Λ, c) Δ= {x ∈ R
m : ‖x − c‖ ≤ ‖x − v‖ ∀v ∈ Λ},

where c ∈ Λ. It is known [11] that the Voronoi regions Ω(Λ, c) are convex polytopes,
that they are symmetrical with respect to reflection in c, and that they are translations
of Ω(Λ, 0), where 0 is the origin of R

m.
A facet is an (m − 1)-dimensional face of an m-dimensional polytope.
The Voronoi region is uniquely determined by the Voronoi relevant vectors. These

vectors lie opposite to the facets of the Voronoi region polytope and are the reflections
of the origin in these facets. Therefore, each Voronoi relevant vector v defines a facet
of Ω(Λ, 0), where this facet is perpendicular to the Voronoi relevant vector v and
intersects it in its midpoint 1

2v. A set of Voronoi relevant vectors is defined as a
minimal set N(Λ) ⊆ Λ for which

Ω(Λ, 0) = {x ∈ R
m : ‖x‖ ≤ ‖x − v‖ ∀v ∈ N(Λ)}.

A lattice of dimension n can have at most 2n+1 − 2 Voronoi relevant vectors. This
number is attained with probability 1 by a lattice whose basis is chosen at random
from a continuous distribution (see [1] and references therein).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 717

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

V1

−V1

V2

−V2

V3

−V3

Fig. 1. An example showing the Voronoi region of the origin and the Voronoi relevant vec-
tors for a two-dimensional lattice. The lattice points are marked with a circle, and the Voronoi
relevant vectors are marked with a “⊗.” There are 6 Voronoi relevant vectors, denoted by
v1,−v1, v2,−v2, v3, and −v3.

Due to the symmetry of the Voronoi region, if v is a Voronoi relevant vector,
then −v is also a Voronoi relevant vector. It is therefore convenient to define a
“compressed” set that contains only a single representative from each pair {v,−v}. A
one-sided set of Voronoi relevant vectors is thus defined as a minimal set N ′(Λ) ⊆ Λ
for which

Ω(Λ, 0) = {x ∈ R
m : ‖x‖ ≤ ‖x − v‖ , ‖x‖ ≤ ‖x + v‖ ∀v ∈ N ′(Λ)}.

Evidently, for a lattice of dimension n, the set of one-sided Voronoi relevant vectors
can contain at most 2n − 1 vectors.

As an illustration, Figure 1 shows the Voronoi region of the origin and the Voronoi
relevant vectors for a two-dimensional lattice.

3. The lattice slicer.

3.1. General description and some preliminaries. We shall now present the
proposed algorithm—the lattice slicer. Finding the closest lattice point to x ∈ R

m for
a lattice Λ is equivalent to finding a lattice point c ∈ Λ such that the error e = c − x
is inside the Voronoi region of the origin Ω(Λ, 0). The lattice slicer algorithm starts
with c = 0 and iteratively updates c such that the resulting error vector e will finally
reach Ω(Λ, 0). In each step, e is checked against a pair of facets of Ω(Λ, 0), defined
by a single-sided Voronoi relevant vector, and c is updated such that the resulting e
will be at the correct side of these facets. The algorithm terminates when e is at the
correct side of all the facets of Ω(Λ, 0).

Before proceeding to the detailed algorithm description, we need to prove some
basic results. The following lemma gives an alternative definition to the one-sided set
of Voronoi relevant vectors, where the conditions involve inner products instead of
distances.

Lemma 1. Let Λ be a lattice in R
m. Denote the Voronoi region of the origin by

Ω(Λ,0). A one-sided set of Voronoi relevant vectors can be alternatively defined as a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

718 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

minimal set N ′(Λ) ⊆ Λ for which

Ω(Λ, 0) =
{

x ∈ R
m : |x · v| ≤ 1

2
‖v‖2 ∀v ∈ N ′(Λ)

}
.

Proof. According to the definition of the one-sided set of Voronoi relevant vectors,
x ∈ Ω(Λ, 0) if and only if ‖x‖2 ≤ ‖x − v‖2 and ‖x‖2 ≤ ‖x + v‖2 for all v ∈ N ′(Λ).
Now, ‖x‖2 ≤ ‖x − v‖2 is equivalent to ‖x‖2 ≤ ‖x‖2 + ‖v‖2 − 2x · v, which yields
x · v ≤ 1

2 ‖v‖2. In the same manner, ‖x‖2 ≤ ‖x + v‖2 is equivalent to x · v ≥ − 1
2 ‖v‖2,

so the pair of conditions ‖x‖2 ≤ ‖x − v‖2 and ‖x‖2 ≤ ‖x + v‖2 in the definition of
the one-sided set of Voronoi relevant vectors can be replaced by the single condition
|x · v| ≤ 1

2 ‖v‖2, and the lemma is proved.
Lemma 1 can be given a simple geometric interpretation. The condition |x · v| <

1
2 ‖v‖2 means that the length of the projection of x along the direction of v is less
than 1

2 ‖v‖. This means that x is located between the two hyperplanes that are
perpendicular to v and intersect it at 1

2v and − 1
2v, respectively. Therefore, if this

condition is satisfied for all the Voronoi relevant vectors, then x is at the “correct”
side of all the facets that define the Voronoi region of the origin and is therefore inside
this Voronoi region.

In what follows, we shall use rounding operations, where the basic rounding op-
eration is defined as follows.

Definition 1. For every r ∈ R, round(r) is defined as the closest integer to
r, i.e., the integer k ∈ Z that minimizes |r − k|. If r is the midpoint between two
consecutive integers, then the integer with smaller absolute value is chosen.

Note that this definition is slightly different from the commonly used rounding
operation, where a midpoint between consecutive integers is rounded to the integer
with larger absolute value. The need for this modification will be explained later.

Lemma 1 imposed a set of conditions on a vector that lies inside the Voronoi region
of the origin, where each condition involved one of the Voronoi relevant vectors. The
next lemma suggests a way to modify a given vector if one of these conditions is not
fulfilled.

Lemma 2. Let e, v ∈ R
m. Define ẽ = e − kv, where

(1) k = round

(
e · v
‖v‖2

)

and where round(·) is as in Definition 1. Then, |ẽ · v| ≤ 1
2 ‖v‖2.

Proof. According to the definition of k, we can write e · v = ‖v‖2 (k + ε), where
|ε| ≤ 1

2 and k ∈ Z. We then have

|ẽ · v| = |(e − kv) · v| =
∣∣∣e · v − k ‖v‖2

∣∣∣ = ∣∣∣ε ‖v‖2
∣∣∣ ≤ 1

2
‖v‖2(2)

as desired.
Lemma 2 has a geometric interpretation: If k was calculated without the rounding

operation, kv would be the projection of e on v. Subtracting this projection from e
would result in a vector which is orthogonal to v, thus minimizing |ẽ · v|. However,
due to the rounding operation, ẽ will be only “approximately orthogonal” to v.

The geometric interpretation of Lemma 2 is illustrated in Figure 2, which shows
the two-dimensional lattice of Figure 1. The figure shows the hyperplanes (for this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 719

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

e

-V
1

V
1

e
~

Fig. 2. Example of the modification step of Lemma 2.

case, straight lines) that intersect the Voronoi relevant vectors v1,−v1 at 1
2v1,− 1

2v1,
respectively. The vector e lies outside the region that is bounded by the two straight
lines, and we want to use Lemma 2 in order to insert it into this region. The stars
mark possible locations for ẽ = e− kv1 for various values of the integer k. Using (1),
we get k = −2, and the resulting ẽ is marked in the figure. It can be seen that this
is the only value of k that puts ẽ inside the desired region. Finding k is actually a
slicing operation: The plane is divided into slices (or layers) whose boundaries are
straight lines. These lines are orthogonal to the Voronoi relevant vector v1 and are
spaced v1 apart from each other. The integer k actually denotes to which of these
slices the vector e belongs.

Finally, the following lemma suggests a condition on the norms of two vectors
that guarantees that their dot product satisfies the condition of Lemma 1.

Lemma 3. Let x, v ∈ R
m. If ‖x‖2 < 1

4 ‖v‖2, then |x · v| < 1
2 ‖v‖2.

Proof. ‖x‖2
< 1

4 ‖v‖2 implies that ‖x‖ < 1
2 ‖v‖. Using the Cauchy–Schwarz

inequality, we get

|x · v| ≤ ‖x‖ ‖v‖ <
1
2
‖v‖2

which completes the proof.
We are now ready to formulate the lattice slicer algorithm.

3.2. Algorithm description. Given a vector x ∈ R
m and a lattice Λ, we would

like to find the closest lattice point c to x in an iterative manner. We initialize c = 0.
At each iteration, we check the error vector e = c − x. If this error vector is inside
the Voronoi region of the origin, then we know that c is the closest lattice point to x.
Now, from Lemma 1 we see that in order for e to be inside the Voronoi region of the
origin, the absolute value of the dot product of this error vector with each one-sided
Voronoi relevant vector should be smaller than half the norm of this Voronoi relevant
vector. On the other hand, we see from Lemma 2 that if this condition is not fulfilled
for a specific Voronoi relevant vector, then it can be fulfilled by modifying e, where
this modification is equivalent to adding a lattice vector to c. Then, we can simply go

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

720 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

Fig. 3. Flowchart of the lattice slicer algorithm.

over the list of the one-sided Voronoi relevant vectors (assume that there are M such
vectors). For each vector, if e does not satisfy the requirement of Lemma 1, then c is
modified according to Lemma 2 such that the condition will be satisfied.

Using Lemma 3, there is no need to check the condition for Voronoi relevant vec-
tors whose norm is more than twice the norm of the error. The list of Voronoi relevant
vectors is assumed to be sorted by ascending norm, so the algorithm can skip to the
end of the list if it reaches a vector that is longer than twice the current error vector.

After satisfying the condition for a specific Voronoi relevant vector, subsequent
modifications due to other vectors may cause this condition to be unfulfilled again.
Therefore, after finishing all the M Voronoi relevant vectors, the algorithm starts
again from the first vector, and so on. Every check against a Voronoi relevant vector
will be referred to as a “step,” where every pass on the whole list of M vectors will be
referred to as an iteration. If no change has been required for M consecutive steps,
then the error finally reached the Voronoi region of the origin and the algorithm can
be terminated.

The flowchart of the suggested algorithm is shown in Figure 3. The inputs to the
algorithm are the vector x ∈ R

m and the list of M one-sided Voronoi relevant vectors
of the lattice Λ, denoted by v0, v1, . . . , vM−1. It is assumed that this list was prepared

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 721

at the preprocessing stage of the algorithm (see section 7). It is also assumed that the
list is sorted by ascending Euclidean norm, i.e., ‖v0‖ ≤ ‖v1‖ ≤ · · · ≤ ∥∥vM−1

∥∥. The
output of the algorithm is the vector c that holds the closest lattice point to x. The
algorithm uses the counter n, which points to the current Voronoi relevant vector,
and the counter CNT which counts how many consecutive steps have passed without
changing the vector c. If the norm of the Voronoi relevant vector is larger than twice
the norm of the current error vector, the algorithm jumps to the end of the list by
updating n and CNT accordingly. If CNT reaches M , the error vector satisfies the
conditions of Lemma 1 so the algorithm can be terminated.

Note that the calculation of k in Lemma 2 uses the round(·) operation of Definition
1, which takes special care of midpoints between integers. This is needed for singular
situations where e lies exactly on a facet of the Voronoi region of the origin. In such a
case,

∣∣ e·v
‖v‖2

∣∣ = 1
2 for a specific Voronoi relevant vector v. Conventional rounding would

round 1
2 to 1 and − 1

2 to −1, which may result in endless “ping-pong” between two
facets. The modified rounding prevents this situation (see the convergence analysis
in section 4).

Finally, it comes out that the computational complexity can be further reduced
by initializing c to a better starting point, such as the rounded least squares solution
c = round

(
(G′G)−1G′x

)
, where G is the generator matrix of the lattice and G′

denotes the transpose of G. Such initialization causes the error norm to start with a
smaller value, so the algorithm can terminate earlier.

The operation of the algorithm is illustrated in Figure 4 for the two-dimensional
lattice of Figure 1. The initial error is outside the Voronoi region of the origin. At
the first step, the error is entered between the two facets that are perpendicular to
v1. At the second step, the resulting error is entered between the two facets that are
perpendicular to v2. Note that this error is no longer between the two facets that are
perpendicular to v1. The process goes on with v3. Then, the algorithm starts again
with v1. Continuing with v2, the error is finally brought inside the Voronoi region of
the origin and the algorithm can terminate.

4. Convergence. In this section we shall show that the lattice slicer algorithm
always converges to the closest lattice point within a finite number of steps. We shall
first show that the norm of the error vector strictly decreases whenever c is changed.

Lemma 4. Let e, v ∈ R
m. Define ẽ = e−kv, where k = round(e·v

‖v‖2) and round(·)
is as in Definition 1. Then, k 	= 0 implies ‖ẽ‖ < ‖e‖.

Proof. Substituting for ẽ, we have

‖ẽ‖2 − ‖e‖2 = (e − kv) · (e − kv) − ‖e‖2 = −2ke · v + k2 ‖v‖2
.(3)

According to the definition of k, we can write e · v = ‖v‖2 (k + ε), where |ε| ≤ 1
2 and

k ∈ Z. Substituting in (3), we get

‖ẽ‖2 − ‖e‖2 = −2k(k + ε) ‖v‖2 + k2 ‖v‖2 = −‖v‖2
k(k + 2ε).(4)

Since |ε| ≤ 1
2 and k ∈ Z, the expression k(k + 2ε) is strictly positive for |k| ≥ 2,

resulting in ‖ẽ‖2 < ‖e‖2, as desired. We still have to show that k(k + 2ε) is strictly
positive for k = ±1. Assuming that k = 1, the only way for k(k+2ε) to be nonpositive
is if ε = − 1

2 . However, Definition 1 does not allow us to have ε = − 1
2 for k = 1, since

the value 1
2 is rounded to 0 and not to 1. In the same manner, we cannot have

k = −1 with ε = 1
2 . Therefore, k(k + 2ε) is strictly positive for all k 	= 0, resulting in

‖ẽ‖2
< ‖e‖2 for k 	= 0, as desired.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

722 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

−10 −5 0 5 10

−15

−10

−5

0

5

10

V1 −V1
V2

−V2

V3

−V3

Fig. 4. Convergence of the slicer algorithm. Every facet of the Voronoi region of the origin is
marked with the name of the corresponding Voronoi relevant vector.

Using Lemma 4, we can now prove the main theorem of this section.
Theorem 1. Given a lattice Λ and x ∈ R

m, the lattice slicer algorithm of Figure
3 always converges to the closest lattice point of x in a finite number of steps.

Proof. The algorithm starts with c = 0 and updates c along the iterations. Lemma
4 shows that whenever c is updated with k 	= 0, the norm of the error vector e = c−x
strictly decreases. As a result, whenever c is changed, it cannot assume the same
lattice point again. Now, the initial error norm is ‖e‖ = ‖x‖, so the error norm is
bounded above by ‖x‖ for all the iterations of the algorithm. This means that c
always lies within a hypersphere of radius ‖x‖ around x. Having a finite radius, this
hypersphere contains a finite number of lattice points. As long as the algorithm does
not terminate, it must update c with k 	= 0 at least once every M steps. Such an
update changes c from one lattice point to another. Since the algorithm cannot return
to the same lattice point twice and it can visit only a finite number of points, it must
terminate. According to Lemma 1, when the algorithm terminates, the error vector e
is inside the Voronoi region of the origin, so c must be the closest lattice point. That
completes the proof of the theorem.

Finally, the following lemma shows that the set of Voronoi relevant vectors is the
minimal set that guarantees convergence to the closest lattice point.

Lemma 5. Consider the lattice slicer algorithm, and assume that the list of M
Voronoi relevant vectors is replaced with a different list of N arbitrary lattice vectors.
Then, the algorithm will converge to the closest lattice point for every x ∈ R

m if and
only if this list of N lattice vectors contains all the M Voronoi relevant vectors of the
lattice.

Proof. First, it can be seen from the proof of Theorem 1 that the algorithm
terminates for any list of lattice points, since Lemma 4 holds for any v. Now, assume
that the list contains all the Voronoi relevant vectors. Then, according to Lemma 1,
the resulting lattice point must be the closest lattice point. Assume now that a single

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 723

Voronoi relevant vector is missing from the list. According to the definition of the
Voronoi relevant vectors, there exists a point x0 ∈ R

m which is outside the Voronoi
region of the origin, but it satisfies the condition of Lemma 1 for all the vectors in
the list. Therefore, if the algorithm runs with x = x0, it will terminate after a single
iteration and return the origin as the closest lattice point. However, x0 is outside
the Voronoi region of the origin. Therefore, all the Voronoi relevant vectors must be
included in the list to ensure convergence to the closest lattice point.

5. Computational complexity. The most computationally intensive part of
the algorithm is the calculation of k. This is the only computation that is performed
every step and involves vector operations, since the other computations that involve
vector operations can be performed only when c is changed. Also, the squared norms of
the Voronoi relevant vectors, as well as their reciprocals, can be calculated in advance.
The calculation of k involves a single dot product. Assuming an n-dimensional lattice
in R

m, this is an O(m) operation. Since there are O(2n) Voronoi relevant vectors (see
section 2), the complexity of a full iteration is O(m2n).

We would now like to bound the overall complexity of the algorithm. As shown
in section 4, for an input point x, the number of iterations is bounded above by the
number of lattice points in a hypersphere of radius ‖x‖. The volume of the Voronoi
region of a lattice with generator matrix G is

√
det(G′G), where the volume of a

hypersphere with radius ‖x‖ and dimension n is πn/2

Γ(n/2+1) ‖x‖n [11]. However, we
cannot simply divide the sphere volume by the Voronoi region volume, since a lattice
point may be contained in the sphere where only part of its Voronoi region is contained
in it. We can bound the number of lattice points from above by using a sphere with
increased radius ‖x‖ + Δ such that, for every lattice point which is contained in a
sphere with radius ‖x‖, its whole Voronoi region will be contained in a sphere with
radius ‖x‖ + Δ. It can be easily seen that a proper choice for Δ is the norm of the
longest vector which is contained in the Voronoi region of the origin. Note that for
this choice, Δ may depend, in general, on the lattice dimension. For example, for a
rectangular lattice, whose generator matrix is the identity matrix of dimension n, the
Voronoi region is a hypercube, whose longest vector has a norm proportional to

√
n.

If the coordinates of the input point x are chosen randomly and independently, the
average norm of x will also be proportional to

√
n. Therefore, the effect of Δ on the

bound will become negligible only for input points which are far from the origin, i.e.,
‖x‖ >> Δ.

An upper bound for the overall complexity of the algorithm can now be obtained
by multiplying the bound on the number of lattice points in a sphere of radius ‖x‖ by
the complexity of a full iteration, yielding an upper bound on the complexity whose
behavior is

O

(
m2nπn/2

Γ(n/2 + 1)
(‖x‖ + Δ)n√

det(G′G)

)
(5)

operations.
We would now like to develop a similar bound for the sphere decoder (see section

1 and the appendix). The sphere decoder uses an upper triangular representation of
the lattice generator matrix in order to search sequentially for all the lattice points
inside a sphere of radius d and dimension n. At the worst case, in order to reach all
these points, the algorithm has to search all the points inside spheres with radius d
and dimensions 1, 2, . . . , n [12]. The search radius d must be larger or equal to the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

724 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

norm of the closest lattice point to x. Using the above arguments, we can derive an
upper bound on the complexity of the sphere decoder, whose behavior is

O

(
1√

det(G′G)

n∑
k=1

πk/2

Γ(k/2 + 1)
(d + Δ)k

)
(6)

operations.
Comparing (5) and (6), we can see that both expressions depend exponentially

on the lattice dimension n, as expected from solutions to the closest lattice point
problem. It can be easily seen that the summation of exponential terms in (6) will
result in a different constant outside the exponential term but will not change the
base of the exponential term itself. However, the base of the exponential terms is still
different. In (5), we have an additional factor of 2n, which potentially increases the
exponential base by a factor of 2. On the other hand, in (5), the exponential base
depends on ‖x‖ where in (6) it depends on the search radius d. In general, d has to
be larger than ‖x‖, in order for the search sphere to contain the closest lattice point
to x. As ‖x‖ is not known in advance, even a larger search radius must be used in
practice, resulting in an increase in the exponential base of (6). As described in the
appendix, an alternative approach for the sphere decoder is to set a large initial search
radius and then decrease it whenever a closer lattice point is found. For this case, the
search radius changes with time, but the “effective” radius is still larger than ‖x‖,
since most of the time the algorithm has to use a larger radius. Whether the search
radius is fixed or adaptive, the effective radius will probably be less than 2 ‖x‖, so for
large dimensions we should expect the asymptotic complexity of the sphere decoder
to have a better exponential base than that of the lattice slicer, due to the additional
O(2n) complexity factor of each lattice slicer iteration.

Note that we expect the average complexity of the lattice slicer to be much smaller
than the above bound. The number of iterations will be much smaller than the number
of lattice points in a sphere with radius ‖x‖, as the correction steps will move the
error vector quickly close to the origin, and many times a single iteration will suffice.
Also, the complexity per iteration will be much smaller than O(m2n), mainly due to
the test of Lemma 3. Unless this test was used, a full iteration of O(m2n) operations
would be needed for every input vector x ∈ R

m, since every Voronoi relevant vector
has to be checked at least once. However, if x is relatively close to the closest lattice
point, the required complexity is much less than a full iteration, as the test of Lemma
3 inhibits many checks. Although the worst-case complexity may still be O(m2n),
using this test significantly improves the average complexity when the input vector
is uniformly distributed in the Voronoi cell of the lattice (such as for quantization
applications). Even larger improvement is expected when the input vector is a lattice
point with additive Gaussian noise (such as for MIMO decoding or lattice coding
for the Gaussian channel), since the initial error vector will be short with higher
probability than for an input point which is uniformly distributed over the Voronoi
cell.

The required storage of the algorithm is O(m2n), since all the Voronoi relevant
vectors must be prepared in advance and stored during operation.

6. Coordinate search interpretation. We shall now show that the lattice
slicer algorithm can be also interpreted as a coordinate search solution for an opti-
mization problem. We shall first prove the following lemma, which is an extension of
Lemma 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 725

Lemma 6. Let e, v ∈ R
m. Define ẽ = e − kv, where k ∈ Z. Then, choosing

k = k0
Δ= round(e·v

‖v‖2), where round(·) is defined in Definition 1, minimizes the
Euclidean norm of ẽ over all the possible choices of k:

(7) k0 = arg min
k∈Z

‖e − kv‖ .

Proof. We shall first show that an expression of the form ak2 + bk + c, where
k ∈ Z and a > 0, is minimized for k = round(−b

2a). For x ∈ R and a > 0, the
function f(x) = ax2 + bx + c has a single global minimum at x0 = −b

2a , where it
is monotonically increasing for x > x0 and monotonically decreasing for x < x0.
Therefore, an expression of the form ak2+bk+c, where k ∈ Z, must have its minimum
either at
x0� (the largest integer smaller than or equal to x0) or at �x0 (the smallest
integer larger than or equal to x0). Now, the function f(x) = ax2+bx+c is symmetric
about x0 (i.e., f(x0 + x) = f(x0 − x)), so the minimum will be achieved at the closer
point to x0, i.e., at round

(−b
2a

)
.

If we now substitute for ẽ, we have

‖ẽ‖2 = (e − kv) · (e − kv) = ‖e‖2 − 2ke · v + k2 ‖v‖2 .(8)

This is an expression of the form ak2 + bk + c, so the minimum is achieved for k =
round(−b

2a) = round(e·v
‖v‖2). Note that using the round(·) function of Definition 1

instead of conventional rounding will affect only which point to choose in case of two
minimum points with equal value.

Lemma 6 shows that each step of the lattice slicer algorithm can be regarded as
minimization of the error norm, where the minimization is done along the direction of
a Voronoi relevant vector (with an integer coefficient). The Voronoi relevant vectors
define a “bank of directions,” and the algorithm tries to minimize the error norm
along each direction. It terminates when it can no longer minimize along any of the
directions. Since all the directions are lattice points and only integer coefficients are
used, the resulting point must be a lattice point. Theorem 1 shows that choosing
the bank of directions as the set of all the Voronoi relevant vectors ensures that this
coordinate search converges to the global minimum, which is the closest lattice point.
Furthermore, Lemma 5 shows that the set of all the Voronoi relevant vectors is the
minimal set of directions that will assure convergence.

7. Preprocessing: Finding the Voronoi relevant vectors. The lattice slicer
algorithm uses a list of all the Voronoi relevant vectors of the lattice, which should be
computed at the preprocessing stage of the algorithm. An efficient algorithm for the
computation of the Voronoi relevant vectors of a lattice Λ with generator matrix G
is the RelevantVectors algorithm, proposed in [1]. First, the set of midpoints M(G)
is defined as

M(G) Δ= {s = Gz : z ∈ {0, 1/2}n − {0}} .(9)

For each s ∈ M(G), the algorithm finds all the closest lattice points to s, using
the AllClosestPoints algorithm, which is an enhanced sphere decoder (see detailed
description in the appendix). Then, if there are exactly two closest lattice points
x1, x2 (i.e., two points at the same distance from s such that this distance is strictly
smaller than the distance of any other lattice point from s), then 2(x1−s) and 2(x2−s)
are Voronoi relevant vectors of Λ. If the one-sided set of Voronoi relevant vectors is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

726 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

required, it suffices to take only one of these two lattice points. See [1] for a proof
that this algorithm finds all the Voronoi relevant vectors.

Note that the computational complexity of this preprocessing stage, which re-
quires 2n − 1 runs of the enhanced sphere decoder, is significantly higher than that
of the lattice slicer itself. However, in many applications there is a need for solving
several closest lattice points problems for the same lattice. In such cases, the prepro-
cessing stage runs only once per many runs of the lattice slicer itself, so its complexity
becomes negligible.

8. Simulation results. The lattice slicer algorithm was simulated with the fol-
lowing model. The elements of the n×n lattice generator matrix G were generated as
independent Gaussian random variables with zero mean and unit variance, and then
G was normalized to have a determinant of 1. The elements of the n-dimensional
input vector x were generated as independent Gaussian random variables with zero
mean and variance σ2. For small σ, x belongs to the Voronoi region of the origin. If
σ is significantly larger than the dimensions of the Voronoi region, x can be regarded
as uniformly distributed in the Voronoi cell of the closest lattice point (which is not
necessarily the origin).

Computational complexity is measured by the average number of floating point
operations (flops). Multiplication, addition, subtraction, and comparison are regarded
as a single flop. The division operation of (1) is assumed to be implemented with mul-
tiplication by the reciprocal of the denominator, which can be calculated in advance.

The lattice slicer is compared with the AllClosestPoints algorithm of [1], which
is an enhanced sphere decoder (see detailed description in the appendix). No as-
sumption is made on the range of the integer coordinates of the lattice point. The
preprocessing stage of the sphere decoder includes only QR decomposition of G (no
lattice reduction).

In all simulations, the lattice slicer is initialized with the rounded least squares
solution c = round

(
(G′G)−1G′x

)
, where G is the generator matrix of the lattice, as

described at the end of section 3.2.
Figure 5 shows the average computational complexity of the lattice slicer and the

enhanced sphere decoder as a function of the input point standard deviation for a
lattice dimension of n = 8. Every point in the graph was generated by averaging over
1000 randomly generated G matrices with 50 randomly generated instances of the
input point x per each G. It can be seen that the average complexity of the sphere

10-1 100 101 102102

103

104

Input point standard deviation [normalized]

A
ve

ra
ge

 C
om

pl
ex

ity
 [f

lo
ps

]

sphere decoder

lattice slicer

Fig. 5. Average complexity vs. input point standard deviation, lattice dimension = 8.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 727

102 103 104 10510-10

10-8

10-6

10-4

10-2

Complexity [flops]

P
ro

ba
bi

lit
y

D
en

si
ty

 [1
/fl

op
s]

PDF of flops

lattice slicer

sphere decoder

Fig. 6. Probability density function (PDF) of the number of flops, lattice dimension = 8, input
point standard deviation = 500.

decoder is better by a factor of 2. However, the flops count is only a rough complexity
measure, and it may significantly change for specific implementations. Therefore,
the factor of 2 is small enough such that the algorithms can be regarded as having
comparable complexity.

Note that for small input point standard deviations, the complexity increases
with the standard deviation for both algorithms. The reason is that the input point
is still in the Voronoi region of the origin, relatively close to the origin itself. When
the standard deviation gets smaller, the lattice slicer can skip more Voronoi relevant
vectors using the test of Lemma 3, and the sphere decoder reaches the correct point
earlier with higher probability. When the input point standard deviation increases
beyond some level, the curves flatten and complexity becomes constant, since the
input point is now approximately uniformly distributed along the Voronoi region of
the closest lattice point (which is not necessarily the origin).

Figure 6 shows the probability density function (PDF) of the computational com-
plexity, as estimated from the histogram of the computational complexity of the lattice
slicer and the enhanced sphere decoder. The lattice dimension was 8, and the input
point standard deviation was 500, which is large enough to assume uniform distri-
bution of the input point along the Voronoi cell of the closest lattice point. Each
trial in the histogram corresponds to a different G. Five-thousand G matrices were
generated, and the complexity was averaged for each G over 50 instances of the in-
put point. It can be seen that the two PDFs have different behavior: The PDF of
the lattice slicer is concentrated around its peak and decays sharply, where the PDF
of the sphere decoder has a heavy tail. This heavy tail causes the sphere decoder
to have larger computational variability than the lattice slicer. A possible measure
for the computational variability is the peak-to-average ratio of the computational
complexity for a finite set of G matrices, defined as the ratio between the average
complexity for the worst-case G in the set and the average complexity for the whole
set. The sphere decoder’s peak-to-average ratio for a set of 5,000 G matrices was
measured to be larger by a factor of 20 than that of the lattice slicer.

The larger variability of the sphere decoder can be explained as follows. The
complexity of the sphere decoder is larger for G matrices that are close to being
singular, since such matrices tend to have elements with small magnitude on the
diagonal of the corresponding upper triangular matrix. Such elements cause the sphere
decoder to search a large list of values for the corresponding integers, resulting in large
computational complexity peaks.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

728 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

2 4 6 8 10
10

1

10
2

10
3

10
4

10
5

lattice dimension

av
er

ag
e

co
m

pl
ex

ity
 [f

lo
ps

]

lattice slicer

sphere decoder

Fig. 7. Average complexity vs. lattice dimension, input point standard deviation = 500, ran-
domly generated lattices.

2 4 6 8
10

1

10
2

10
3

10
4

lattice dimension

av
er

ag
e

co
m

pl
ex

ity
 [f

lo
ps

]

lattice slicer

sphere decoder

Fig. 8. Average complexity vs. lattice dimension, input point standard deviation = 500, struc-
tured lattices.

Figure 7 shows the average computational complexity of both algorithms as a
function of the lattice dimension for randomly generated lattice generator matrices
and input points (with the simulation conditions as in Figure 5). The input point
standard deviation is 500, which is large enough such that the input point is uniformly
distributed along the Voronoi cell of the closest lattice point. It can be seen that both
algorithms have the same complexity for small dimensions, where the sphere decoder
has an advantage for large dimensions (where this advantage increases as the dimen-
sion increases). This behavior is consistent with the upper bounds of section 5, which
predict that for large dimensions the complexity of both algorithms will be exponential
with the lattice dimension, but the exponential base for the lattice slicer will be larger.

So far we have examined the computational complexity for random lattice gen-
erator matrices. It is also interesting to compare the complexity of the algorithms
for structured lattices. Figure 8 shows the computational complexity as a function of
lattice dimension for the densest possible lattice packings in dimensions 2, 4, 6, and
8, which are the A2, D4, E6, and E8 lattices, respectively [11]. The generator matrix
of each lattice was normalized to have a determinant of 1. For each lattice, 50,000
input points were generated and the complexity was averaged. It can be seen that the
computational complexity of the lattice slicer in Figure 8 is approximately the same
as in Figure 7. However, the complexity of the sphere decoder is much better. For

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 729

2 4 6 8 10102

104

106

108

lattice dimension

A
ve

ra
ge

 c
om

pl
ex

ity
 [f

lo
ps

]

complexity of preprocessing

Fig. 9. Complexity of the preprocessing stage vs. lattice dimension.

example, for a lattice dimension of 8, the average complexity of the sphere decoder
reduces from 2,000 to 450 flops. These results illustrate that the lattice slicer is almost
insensitive to the lattice generator matrix, where the complexity of the sphere decoder
is much worse for matrices which are close to being ill-conditioned. This dependency
degrades the average complexity of the sphere decoder for randomly generated lat-
tices and is also the cause for its large computational variability, as shown in Figure
6. Therefore, the lattice slicer can have advantages over the sphere decoder when
the lattice is generated randomly (e.g., in MIMO communications), but the sphere
decoder is superior for fixed, structured and well-conditioned lattices.

All the above simulations measure only the complexity of the lattice slicer itself,
ignoring the preprocessing, since we assume that many closest lattice point problems
are solved for the same lattice. However, it is of interest to evaluate the complexity
of the preprocessing stage as well. The preprocessing stage finds the Voronoi relevant
vectors using the RelevantVectors algorithm of [1], described in section 7. This al-
gorithm calls the AllClosestPoints enhanced sphere decoder subroutine, described in
the appendix. In each call, it is sufficient to use a search radius of half the norm of the
longest Voronoi relevant vector (see section 7). However, the norms of the Voronoi
relevant vectors are not known in advance. It came out by trial and error that, for
this simulation setting, efficient implementation was achieved by using a search radius
of 1.6 in each call to the enhanced sphere decoder. If no point was found, the search
radius was multiplied by 1.25, and so on, until at least one point was found.

Figure 9 shows the average complexity of the preprocessing stage as a function of
lattice dimension. One-thousand random G matrices were generated for each dimen-
sion, with 50 randomly generated input points for each G, and the complexity was
averaged over all of them. Comparing Figures 9 and 7, it can be seen that the com-
plexity of the preprocessing stage is approximately 3, 10, and 100 times the average
complexity of the lattice slicer itself for lattice dimensions of 2, 4, and 8, respectively.

9. Conclusion. A novel algorithm was proposed for the closest lattice point
problem. The algorithm uses the list of Voronoi relevant vectors of the lattice in
order to break the complex n-dimensional problem into a series of one-dimensional
simple slicing problems. It was shown that the algorithm is guaranteed to converge
in a finite number of steps and that it can be interpreted as a coordinate search
solution for an optimization problem. Simulation results were presented, showing
that the lattice slicer algorithm has average complexity which is comparable to that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

730 NAFTALI SOMMER, MEIR FEDER, AND OFIR SHALVI

of the enhanced sphere decoder, but its computational variability is smaller. The
lattice slicer algorithm is an additional tool in the “toolkit” of closest lattice point
algorithms, giving additional insight to the closest lattice point problem.

Topics for further research include enhancing the speed of convergence by opti-
mizing the order of the list of Voronoi relevant vectors. For example, the list can
be divided into groups, where the vectors in each group are “nearly parallel” to each
other such that starting with a single representative from each group will decrease the
error norm in a fast rate, and then most of the other group elements could be skipped.
Another possible direction is finding an approximate solution by using only part of
the Voronoi relevant vectors, which may be an attractive option for lattices with large
dimension. Also, convergence speed may be improved by iterating the short vectors
several times before using (if needed) the longer vectors.

Appendix A. The sphere decoder and its variants. This appendix describes
the outline of the sphere decoder and its variants. See [1] for a thorough explanation.

Given a lattice Λ with an m× n generator matrix G, we want to find the closest
lattice point to a given vector r ∈ R

m. We can then write r = Gu + w, where u ∈ Z
n

and w ∈ R
m is the noise vector whose norm should be minimized. The popular sphere

decoder, which searches all the lattice points within a sphere of a given radius ρ around
r, is based on the Pohst enumeration [6]. Using QR factorization of the matrix G,
the problem is transformed to an equivalent problem but with an upper triangular
matrix: r̃ = Ru+w̃, where R is an n×n upper triangular matrix with positive diagonal
elements (assuming n ≤ m). The sphere decoder then starts from the bottom nth
row and climbs up through a search tree in a depth first search manner. At row n−k,
given a sequence of candidates for un, un−1, . . . , un−k+1, a candidate list is prepared
for un−k including all values such that

∑k
i=0

∣∣r̃n−i −
∑n

m=n−i Rn−i,mum

∣∣2 < ρ2, i.e.,
the contribution of the bottom k+1 coordinates to the squared distance of the tested
lattice point from r is still less than ρ2. Each member of this candidate list corresponds
to a tree node at layer n− k. Whenever the algorithm reaches the first row (layer 1),
the distance of the resulting lattice point from the received vector r is recorded and
the closest point is updated. If no point is found, the search radius is increased and
the algorithm starts again.

The basic Pohst enumeration can be improved by dynamically updating the
search radius to the distance of r from the closest point found so far. A further
improvement is the Schnorr–Euchner strategy [7], which is equivalent to sorting the
candidate list for un−k by increasing value of the score increment Δscoren−k =∣∣r̃n−k −∑n

m=n−k Rn−k,mum

∣∣2. The AllClosestPoints algorithm of [1], which is used
in this paper for the preprocessing stage of the lattice slicer, as well as for complexity
comparison of the sphere decoder with the lattice slicer, is based on the basic sphere
decoder with these two improvements.

Acknowledgments. Support and interesting discussions with Ehud Weinstein
are gratefully acknowledged. The authors would also like to thank the anonymous
reviewers for their thorough review and valuable comments.

REFERENCES

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search in lattices, IEEE
Trans. Inform. Theory, 48 (2002), pp. 2201–2214.

[2] N. Sommer, M. Feder, and O. Shalvi, Low density lattice codes, IEEE Trans. Inform. Theory,
54 (2008), pp. 1561–1585.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ITERATIVE SLICING FOR THE CLOSEST LATTICE POINT 731

[3] O. Shalvi, N. Sommer, and M. Feder, Signal Codes, in Proceedings of the IEEE Information
Theory Workshop, Paris, 2003, pp. 332–336.

[4] P. van Emde Boas, Another NP-complete Partition Problem and the Complexity of Comput-
ing Short Vectors in a Lattice, Report 81-04, Mathematisch Instituut, Amsterdam, The
Netherlands, 1981.

[5] D. Micciancio, The hardness of the closest vector problem with preprocessing, IEEE Trans.
Inform. Theory, 47 (2001), pp. 1212–1215.

[6] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis, Math. Comp., 44 (1985), pp. 463–471.

[7] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and
solving subset sum problems, Math. Program., 66 (1994), pp. 181–191.

[8] N. Sommer, M. Feder, and O. Shalvi, Closest point search in lattices using sequential decod-
ing, in Proceedings of the IEEE International Symposium on Information Theory (ISIT),
Adelaide, Australia, 2005, pp. 1053–1057.

[9] R. Gowaikar and B. Hassibi, Efficient maximum-likelihood decoding via statistical pruning,
IEEE Trans. Inform. Theory, submitted.

[10] M. O. Damen, H. El Gamal, and G. Caire, On maximum-likelihood decoding and the search
of the closest lattice point, IEEE Trans. Inform. Theory, 49 (2003), pp. 2389–2402.

[11] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Springer-
Verlag, New York, 1999.

[12] B. Hassibi and H. Vikalo, On the sphere-decoding algorithm I. Expected complexity, IEEE
Trans. Signal Process., 53 (2005), pp. 2806–2818.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

